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We prove a weighted inequality for algebraic polynomials and their derivatives
in Lp[&1, 1] when 0< p<1. This inequality plays the same role in the proofs of
inverse theorems for algebraic polynomial approximation in Lp as the classical
Bernstein inequality does in the case of trigonometric polynomials. � 1996 Academic

Press, Inc.

1. Statement of the Theorem

We prove the following weighted inequality for algebraic polynomials
and their derivatives in Lp when 0< p<1:

Theorem 1. For every algebraic polynomial Pn of degree not exceeding n

"P (r)
n \r

n

|(\n)"Lp[&1, 1]

�c } " Pn

|(\n)"Lp[&1, 1]

, (1.1)

where \n(x)=n&1(1&x2)1�2+n&2 and the function |: R+ � R+ satisfies
with some constant M�1 the condition

M&1|(t1)�|(t2)�M } |(t1), \t1�t2�2t1 . (1.2)

The constant c may be represented as c=cr
0 } r !, where c0 depends on M

and p, but on nothing else.

The inequality (1.1) plays the same role in the proofs of inverse theorems
for algebraic polynomial approximation as the classical Bernstein inequality
does for trigonometric polynomials. In the case p=� the inequality (1.1)
was proved by Yu. Brudnyi [2] and used by A. F. Timan [11] in the proof
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of the inverse theorem for approximation by algebraic polynomials in the
uniform metric. In the case 1� p<� the inequality (1.1) was proved by
G. K. Lebed [5] and used by the author [9] in the proof of the inverse
theorem for algebraic polynomials approximation in Lp .

For 0< p<1 the inequality (1.1) was proved by P. Nevai [7] and V. I.
Ivanov [4] in the special case |(t)=t:; however, no explicit statement was
made on the dependence of the constant c on r. Such dependence plays an
important role when the inequality is being used in inverse theorems, which
is a peculiarity of the case 0< p<1 (see, e.g. [10], [3]); we recall that the
Bernstein inequality for trigonometric polynomials in Lp , 0< p<1, holds
with the constant c=1 (V. V. Arestov, [1]). The special case |(t)#1 of
the inequality (1.1) with the appropriately estimated constant is contained
in the paper of G. Tachev [10] and in the paper of Z. Ditzian, D. Jung,
and D. Leviatan [3], and is used there in proofs of the inverse theorems
for generalized moduli of smoothness. Inverse theorems for the classical
modulus of smoothness require inequalities with the special weights |(\n)
to handle the ``end-effect'' of algebraic polynomial approximation (see, e. g.,
[12]); inverse theorems for Lipschitz spaces in Lp and more general Besov
spaces Bs

pq when p{q require the inequality (1.1) with non-power
majorant | (see [8]).

2. Proof of the Theorem

We start with an auxiliary inequality in Lp , which is similar to Markov's
inequality in the uniform metric (see, e.g., [6, p. 39]):

Lemma 1. Let 0< p<1 and the function |: R+ � R+ satisfies the con-
dition (1.2) with some constant M�1. For every polynomial Pn of degree not
exceeding n

" P$n
|(\n)"Lp(An)

�c } n2 } " Pn

|(\n)"Lp[&1, 1]

, (2.1)

where An=[x # [&1, 1] : (1&x2)1�2�n&1], and the constant c depends on
p and M, but on nothing else.

Proof. Let Bn=[x # [&1, 1]] : (1&x2)1�2>n&1], s=[ p&1]+1, and
+=s& p&1. We will write aOb if there is a constant c�1 such that
a�c } b; unless an explicit remark is made about the constant c, we will
assume that c may depend on p and M, but on nothing else. We will also
use the notations $(x)=(1&x2)1�2 and $n(x)=max[(1&x2)1�2, n&1].

140 vladimir operstein



F
ile

:6
40

J
29

00
03

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

7
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

26
07

Si
gn

s:
13

35
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Let Tn(%)=Pn(cos %)(sin %)s, and x=cos %. For x # Bn

|P$n(x)| On1+1�p } $(x)&+ } [n |Tn(%)|+|T $n(%)|]. (2.2)

Let T (0)
n =Tn , and T (1)

n =T $n . We use the representation

T (!)
n (%)=|

?

&?
Tn(%+t) } Kn, m;!(t) dt, % # R, !=0, 1, (2.3)

where Kn, m;(t) are trigonometric polynomials of degree at most cp } m } n,
and

|Kn, m;!(t)| On1+! } (1+n |t| )&m, t # [&?, ?], !=0, 1, (2.4)

with the constant independent of t and n (see, e.g., [5, Lemmas 2 and 6],
[12, Section 4.7.5]). Applying (2.3), (2.4), and the ``different metrics''
inequality [4]

&{&L1[&?, ?] ON 1�p&1 &{&Lp[&?,?] , (2.5)

for trigonometric polynomials { of degree at most N, in our case {(u)=
Tn(%+u) } Kn, m;!(u), we obtain the estimate

|T (!)
n (%)| On1�p+! } &Tn(%+} )(1+n | } | )&m&Lp[&?, ?] (2.6)

with the constant depending on p and m, but on nothing else.
Let x # Bn , x=cos %, and m�log2 M+1. It follows from the estimates

(2.2) and (2.6) that

|P$n(x)| On2(1+1�p) } $(x)&+ } &Tn(%+} )(1+n | } | )&m&Lp[&?, ?] . (2.7)

The function .n(u)=|(\n(u)) satisfies the condition

.n(cos(%+t))�c0(1+n |t| )* .n(cos %), if |sin %|�n&1, (2.8)

with c0=M 2, and *=log2 M. The estimate

&Tn(%+} )(1+n | } | )&m&Lp[&?,?] O$(x)+ } |(\n(x)) } " Pn

|(\n)"Lp[&1,1]

(2.9)

follows directly from the definitions, the inequality |sin(%+t)|�(1+n |t| ) }
|sin %|, and (2.8). The inequalities (2.7) and (2.9) imply that for every x # Bn

|P$n(x)| OL } |(\n(x)), (2.10)

where L=n2(1+1�p) } &Pn�|(\n)&Lp[&1, 1] .
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The inequality (2.10) can be extended to the whole interval [&1, 1] by
using the standard argument (see, e.g., [12, p. 221�222] or [5, Theorem 3]).
The required inequality (2.1) follows from (2.10), when x # An , and the
estimate mesAn�2n&2. K

We now prove an auxiliary inequality, which is similar to Bernstein's
inequality for algebraic polynomials in the uniform metric (see, e.g.,
[6, p. 40]):

Lemma 2. Let 0< p<1, n # N, and the function .n : R+ � R+ satisfies
the condition (2.8) with some constants c0�1 and *>0. For every polyno-
mial Pn of degree not exceeding n

"P$n } $
.n "Lp(Bn)

�c } n } "Pn

.n"Lp[&1, 1]

, (2.11)

where Bn=[x # [&1, 1] : (1&x2)1�2>n&1], $(x)=(1&x2)1�2, and the
constant c�1 depends on c0 , *, and p, but on nothing else.

Proof. Let s=[ p&1]+1, +=s& p&1, and Tn(%) is the trigonometric
polynomial used in the proof of Lemma 1. For x=cos %

|P$n(x) } $(x)| O |Pn(x)| } $(x)&1+|T $n(%)| } |sin %| &s.

Let B� n=[% # [&?, ?] : n&1�|sin %|]. Then

"P$n } $
.n "Lp(Bn)

On } "Pn

.n"Lp(Bn)

+"T $n(%)(sin %)&+

.n(cos %) "Lp(B� n)

, (2.12)

Using the inequality (2.8), the estimate |sin(%+t)|�(1+n |t| ) } |sin %| for
% # B� n , and the inequality (2.6) with !=1 and m=[++*]+3, we obtain

"T $n(%)(sin %)&+

.n(cos %) "Lp(B� n)

On } "Pn

.n"Lp[&1, 1]

. (2.13)

The required inequality (2.11) follows from (2.12) and (2.13). K

The inequality (1.1) in the case r=1 follows from Lemmas 1 and 2 when
.n(x)=|(\n(x)). To obtain (1.1) with r>1, we use the following lemma:

Lemma 3. Let 0< p<1 and the function |: R+ � R+ satisfies the con-
dition (1.2) with some constant M�1. For every polynomial Pn of degree not
exceeding n # N and &=1, ..., n

"P$n $&+1
n

|(\n) "Lp[&1, 1]

�c } n } & } " Pn$&
n

|(\n)"Lp[&1, 1]

, (2.14)
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where $n(x)=max[(1&x2)1�2, n&1], and the constant c depends on p and
M, but on nothing else.

Proof. It follows from Lemma 1 that

"P$n $&+1
n

|(\n) "Lp(An)

On } " Pn$&
n

|(\n)"Lp[&1, 1]

, (2.15)

since $n(x)=n&1 for every x # An and n&1�$n(x) for x # [&1, 1].
It follows from Lemma 2 that

"P$n $&+1
n

|(\n) "Lp(Bn)

On } " Pn$&
n

|(\n)"Lp[&1, 1]

, (2.16)

Indeed, when & is even, we apply Lemma 2 to the polynomial Pn$& of
degree not exceeding 2n and the weight function .n(x)=|(\n(x)), and use
the estimate |$$(x)|�n when x # Bn . When & is odd, Lemma 2 is applied
to the polynomial Pn $&+1 and the weight function .n(x)=$(x) } |(\n(x)).
The function $(x) is finally replaced by $n(x), since $n(x)=$(x) for every
x # Bn , and $(x)�$n(x) for x # [&1, 1].

The inequality (2.14) follows from (2.15) and (2.16). K

Proof of Theorem 1. The inequality (1.1) follows by induction from
Lemma 3. K
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